Using the Linux Virtual Machine

Update:

On my computer | had problems with screen resolution and the VM didn't resize with the
window and take the full width when in fullscreen mode. This was fixed with installation of an
additional package. In a console window (see below how to pen that), | gave this command:

sudo apt-get install virtualbox-guest-dkms

This asks for the password. That is "genomics". After restarting the VM, the screen resize
works fine.

Some programs are found in the menu at the bottom-left corner.

Many programs are command-line only and not in the menu. To use the command line, start
the console by clicking the icon in the bottom panel.

Execute the following commands to create a new directory in your home folder "~/" for
today’s exercises:

mkdir ~/session_1

cd ~/session 1

Open the file browser to see what you did.
]

The Shared Folders is under /media. On the file browser you can change to directory view
using the pull down menu on the top-left corner:

@
File Edit View Book
[l ¢« ~ » ~ g4

Directory Tree v

Places
* Directory Tree

Click then "media" and "sf_evogeno".

Using RStudio

Click this link:

https://drive.google.com/open?id=0B3Cf0QL4k1-PTkZ5QVJEQ1psRUU

and select to open the file in RStudio. Save the file in the folder "session_1" that you created
above.

The script requires two R libraries that are not installed. Install them by typing the following
commands in the R console window:

install.packages ("ggplot2")
install.packages ("reshape")

Now you are ready to run the script e.g. by clicking the "Source" button in the top-right
corner of the file editor window. If the script runs fine, the resulting plot is shown in the
"Plots" tab in the right-bottom corner. We will get back to this particular script and plot later
on the course.

Using BASH

Scripting

Bash is the command language used through the console. One can give bash commands
directly in the console, or write them into a script file that is then executed. Scripting is a
central part of this course and it is crucial to understand the basic commands used.

Type the following command in the console and press enter:
seq 1 10

Remember that you can learn more about any Unix command from the manual:
man seq
Press q to close the manual.

Do then the same as a script. Start the text editor geany:

cd ~/session 1

geany scriptl.sh &

write the command there, save the file and execute it with command:

https://drive.google.com/open?id=0B3Cf0QL4k1-PTkZ5QVdEQ1psRUU

source scriptl.sh

One central concept is a loop that does a certain thing multiple times. There are different
ways of doing loops but knowing for, do, done is a good start. Open another script in
geany:

geany script2.sh &

write the following script there, and execute it:

for num in 1 2 3 4 5; do
echo "number" S$Snum
done

We can replace the list of numbers (1 2 3 4 5) with the command seq 1 5. This has to be
surrounded by backticks * to execute the command and give its return value. In the VM,
backticks are created by keeping Shift down and pressing * key (next to Backspace in
Finnish keyboard twice).

for num in "seq 1 5°; do
echo "number:" S$num
done

Often we need to loop across multiple files. Let's first create files:
for num in "seq 1 5°; do

echo "number:" S$num > file""Snum.txt
done
Check that the files were created and they have the right content:
1s
cat file*.txt

Now we do something specifically for those files:

for £ in "1s file*.txt ; do
path="readlink -m S$f°

echo "file name:" "basename Spath’
echo "directory:" ‘dirname S$path’
b="basename $f .txt’
n=$b.text
mv $f Sn

done

Check what has happened:
ls filex*

You can reverse the change with command:

rename 's/text/txt/' file*text

Using basename (as above) to replace parts of strings is easier but it has its own limits and
sometimes we need to use string operations:

for £ in “1ls file*.t{e, }xt" ; do
n=${f/file/data};
echo $f $n

done

Another important concept is condition, for example testing if a file exists or not. Let's first
make some files:

for num in “seq 1 5°; do
echo "number:" Snum > file""S$Snum.txt
done

and then change them conditionally:
for num in “seq 1 5°; do

s=file$Snum.txt
l="basename $s .txt .text

if [—-e "S$Ss"]; then
mv S$s S$1
elif [-e "$1" 1; then
mv $1 S$s
fi

done

Check what happened with 1s file* and run the script again.
When creating (or debugging) a script, it's useful to print out the commands using "echo":

for num in "seqg 1 5°; do
s=fileSnum. txt
l1="basename $s .txt .text
echo -en "\nround S$num: "

if [-e "$s"]; then
echo "mv $s $1"

mv $s S$S1

elif [-e "$1"]; then
echo "mv $1 $s"

mv $1 S$s

fi

done

Often it's useful to be able to use the same script e.g. for multiple data sets and be able to
give arguments as input for the script. Re-using the first example, let's make a script that
takes two arguments:

cd ~/session 1
geany script2.sh &

Write the commands below in the file and save it:

argl=s1

arg2=5$2

for num in ‘seq $argl S$arg2 ; do
echo "number:" S$num

done

Now execute the script with command:
source script2.sh 3 8

Stream processing

In addition to scripts that repeat certain things in a specified order, we use lots of commands
that modify or process text streams. A central concept are pipes | that take the output of the
left command and give as the input for the right command:

1ls file* | wc

Let's get some real data:

wget —-g —--header='Content-type:text/x-gff3'
'http://rest.ensembl.org/overlap/region/human/7:140000000-14010000
O?feature=gene; feature=transcript; feature=cds; feature=exon' -0

genes.gff

We'll have a closer at the Ensembl REST later on the course. Now we just use this an
example of genomic data file.

"less" is an amazing command. It can show the contents of many types of files, including
simple pdfs and compressed files. The most important argument to us is -S that disables line
wrapping: our files tend to have very long rows! Compare these two:

less genes.gff

less -S genes.gff

Remember that q quits many programs, including "less". Arrow keys can be used to scroll
the screen up and down, and left and right.

A dff file is a table with columns separated by tabs. We can see this command:
cat -A genes.gff | less -S

We could select lines using keywords

grep CDS genes.gff | less -S

grep -e CDS -e gene genes.gff | less -S

but often we want to be more specific, e.g. we want lines where 3rd column is "CDS". For
that we can use Awk:

cat genes.gff | awk '$3 ~ /CDS/ {print $0}' | less -S
or
awk '$3 ~ /CDS/ {print $0}' genes.gff | less -S

Awk is a scripting language of its own and worth learning the basics of. We mostly use it to
select some lines and select/modify columns of that. We could write full programs, however,
and execute them similarly to Bash programs. Start geany:

geany scriptl.awk &
and create and save the following script:

BEGIN {
IFS="\t"
OFS=":"

if ($3=="CDS") {c=c+1l}

1f($3=="gene") {g=g+l}

if ($3=="transcript") {t=t+1}
}
END {

print "csd",c

print "gene", g

print "transcript:",t

This script can now be executed as:

awk -f scriptl.awk genes.gff

An Awk script consists of three parts: BEGIN is done before anything, middle part is
repeated for each line, and END is done in very last. Here we defined input and output field
separators (IFS is by default tab so that was unnecessary) in BEGIN; count lines with
specific words; and print the results in END.

Often we are lazy and do not write a proper program but a one-liner that does the same
thing:

awk '"{if ($3=="CDS") {c=c+1} if($3=="gene") {g=g+1}
if ($3=="transcript") {t=t+1}} END {print c,g,t}' genes.gff

Normally we are even lazier and use a combination of Bash programs to get the same
information:

cut -f3 genes.gff | sort | unig -c

On this course one has to understand some Awk but it's not strictly necessary to use Awk to
do things. I'm so old that | learned Perl and could do the same using a one-liner:

perl -ne '(Q@r)=split /\t/,$;if(Sr[2] eq "CDS") {Sc+=1} if(Sr([2] eq
"gene") {Sg+=1} 1if(S$r[2] eqg "transcript") {$t+=1} END{print
"Sc,$8g,S$t\n"}"' genes.gff

If someone wants to use Python, that's fine but | won't be able to help.

As mentioned above, Awk has fields separators and then splits a line based on those. The
value of first column is in $1, the second in $2 and so on. The full line is in $0. We can use
regular expressions outside the main loop to select patterns or conditional statements within
the loop. A typical task is to select certain lines and output a set of columns. Sometimes we
may want to edit the fields before outputting them:

awk '$3 ~ /CDS/ {print $1,$4,$5}' genes.gff | head

awk '$3 ~ /CDS/ {1if($7=="+"){$4-=1000} else {$5+=1000} print
$1,%$4,85}" genes.gff | head

Can you spot (and understand) the difference?
Finally, we often combine Awk commands with "sort":

grep -v "#" genes.gff | sort -k3,3 -k4,4 | awk '{print
$1,$3,%4,85}"' | less

Here, we drop the comment lines, sort the data first by the 3rd column an then by the 4th
column. See man sort for more details.

Bash programs and commands amazingly powerful and one can't master all of them. If you
want to do something, a good starting point is to believe that it can be done and then google
for a potential solution. As an example, the following command helps reading large tables in
a command-line window:

tail -n +3 genes.gff | column -t | less -#2 -N -S

Home work

If you great difficulties following these examples, you should immediately take some time
and learn the basics of Linux command-line usage. This course will require fluent usage of
Bash. Later on the course we will focus on the usage of real analysis programs and have no
time to help with the elementary commands.

One can only learn the usage of Linux by using it and trying things. Some useful links to
learn the basics are:

AWK community portal: http://awk.info/?Learn

BASH from basics to scripting: https://bash.cyberciti.biz/guide/Main_Page
BASH official beginner’s guide: http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
R-bloggers: http://www.r-bloggers.com/how-to-learn-r-2/

R graphical intro: http://tryr.codeschool.com/

Advanced topic: Using R Markdown with RStudio

Markdown is an easy format to write impressive-looking documents. R Markdown combines
the Markdown language with embedded R code and graphics.

If you want to use R Markdown, you need to install additional R packages. These are
automatically installed by RStudio if you select "File" -> "New File" -> "R Markdown". The
installation takes a few minutes. When it is ready, RStudio automatically proposes to create
an example document: fill in the details and select "html_document" as the output. The
document is compiled using the "Knit" button in the top panel.

http://awk.info/?Learn
http://awk.info/?Learn
https://bash.cyberciti.biz/guide/Main_Page
https://bash.cyberciti.biz/guide/Main_Page
http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://www.r-bloggers.com/how-to-learn-r-2/
http://www.r-bloggers.com/how-to-learn-r-2/
http://tryr.codeschool.com/
http://tryr.codeschool.com/
http://tryr.codeschool.com/

R Markdown becomes even better when documents are outputted as pdf. This requires
LaTeX, however, and that takes ~1Gb of disk space. You can install the necessary
packages with:

sudo apt-get install texlive texlive-latex-extra pandoc

You can then change the output format to "pdf_document" and recompile the document. An
example of R Markdown document can be found here:
https://drive.google.com/open?id=0B3Cf0QL4k1-PNURXVEhKdUQS5RUk

The resulting pdf looks like this
https://drive.google.com/open?id=0B3Cf0QL4k1-PMXNGWjRaNzh6UkE

(The compilation requires additional steps that are either explained in the Rmd document or
revealed by the error messages of Bash commands.)

More information about R Markdown can be found here
http://rmarkdown.rstudio.com/

https://drive.google.com/open?id=0B3Cf0QL4k1-PNURxVEhKdUQ5RUk
https://drive.google.com/open?id=0B3Cf0QL4k1-PMXNGWjRaNzh6UkE
http://rmarkdown.rstudio.com/

