Genomic alignment, ancestral alleles, lift-over of coordinates

Ancestral allele inference and lift-over of genomic coordinates require a pairwise alignment
of genome sequences. We align the nine-spined stickleback sequence with that of
three-spined stickleback using the alignment program "last" (http://last.cbrc.jp/).
Three-spined stickleback (Gasterosteus aculeatus) is a model species for studying
morphological variation, evolution and population genetics, and is included in Ensembl
(http://www.ensembl.org/Gasterosteus_aculeatus/Info/Index).

Genomic alignment

Make a new directory for the alignment and get the genome data there:

mkdir ~/session_7
cd ~/session 7
mkdir align

In -s ../session 3/reference .

This file is big (448MB) and you don't need to download it if you skip the alignment step
below (the alignment may take hours to complete).

wget http://wasabiapp.org/vbox/data/session 7/threespine.fa -P reference

You can find the instructions for using "last" at http://last.cbrc.jp/doc/. We follow Examples 6
and 8 in the tutorial http://last.cbrc.jp/doc/last-tutorial.html. First we need to index
(http://last.cbre.jp/doc/lastdb.html) one of the sequences, here the one for nine-spined:

lastdb -uNEAR -cR11l reference/ninespinedb reference/ninespine.fa

We then align (http://last.cbrc.jp/doc/lastal.html) the second sequence (here three-spined)
against that. We combine two commands to consider split alignments crossing
rearrangement breakpoints (http://last.cbrc.jp/doc/last-split.html):

lastal -m100 -E0.05 reference/ninespinedb reference/threespine.fa \
| last-split -ml > align/out.maf

However, genome alignment takes easily a couple of hours and there's no point waiting for
that. Instead we download the alignment and continue with that:

wget http://wasabiapp.org/vbox/data/session 7/out.maf -P align

As explained in Example 8 of the last tutorial, the commands above guarantee 1-to-1
relationship from three-spined to nine-spined but not necessarily for the opposite directions
(can be 1-to-many). We fix that with commands:

maf-swap align/out.maf | last-split -ml > align/out2.maf

http://last.cbrc.jp/
http://www.ensembl.org/Gasterosteus_aculeatus/Info/Index
http://last.cbrc.jp/doc/
http://last.cbrc.jp/doc/last-tutorial.html
http://last.cbrc.jp/doc/lastdb.html
http://last.cbrc.jp/doc/lastal.html
http://last.cbrc.jp/doc/last-split.html

We swap the sequences one more time to have nine-spined first (use 1ess -s out2.maf and
less -S out3.maf to see the difference):

maf-swap align/out2.maf > align/out3.maf

We then convert (http://last.cbrc.jp/doc/maf-convert.html) the maf alignment to sam format,
sort that and conver to bam. This will be used for the AA reconstruction.

maf-convert sam -r 'ID:1 PL:ILLUMINA SM:threespine' align/out3.maf \
| samtools view -bt reference/ninespine.fa.fai -o align/out3.bam

samtools sort -T out3_sort align/out3.bam -Obam -o align/ThreeSpine.bam

samtools index align/ThreeSpine.bam

You can see the alignment with standard tools:

samtools view align/ThreeSpine.bam | less -S

samtools tview align/ThreeSpine.bam reference/ninespine.fa \
-p ctg7180000005484:19000

Ancestral alleles

We use the bam file to add ancestral alleles into our vcf file. First copy the vcf file from the
previous time:

In -s ../session 3/datal0Ol good.vcf.gz

We then use samtools mpileup and beftools call to call the positions defined by
datalOl good.vcf.gz:

samtools mpileup -ugf reference/ninespine.fa -1 datalO0l good.vcf.gz \
align/ThreeSpine.bam | bcftools call -m \
| bcftools view -Oz -o ThreeSpine good.vcf.gz

bcftools index ThreeSpine good.vcf.gz

We merge the old vcf file and the new three-spined vcf file (did we forget something?):

bcftools merge -0z -o merged.vcf.gz datalOl good.vcf.gz ThreeSpine good.vcf.gz

We then use bcrtools to output specific fields and an awk command to pick either the
reference or the variant allele as the fifth field:

bcftools view -m2 -M2 -v snps -s threespine merged.vcf.gz \
| bcftools query —-f '"$CHROM\t%POS\t%REF\t$ALT [\t%GT]I\n"' \
| awk '{OFS="\t";if ($5=="0/0") {print $1,$2,$3,%$4,53} \
if ($5=="0/1") {print $1,$2,53,%$4,54}}"' > datalOl aa.tab

http://last.cbrc.jp/doc/maf-convert.html

What are the five fields that we have picked?

This tab-separated file is compressed and indexed:

bgzip datalOl aa.tab
tabix -sl -b2 -e2 datalll aa.tab.gz

We create an Info line to be added to the vcf header section and then use bcftools
annotate to add those fields to the vcf file (In fact, the first four fields are used to match the
lines and only the fifth INFO/AA field is added as new data):

echo '"##INFO=<ID=AA,Number=1, Type=Character,Description="Ancestral allele">' >
hdr.txt

bcftools annotate -a datalOl aa.tab.gz -c CHROM, POS,REF,ALT, INFO/AA -h hdr.txt -0z
-0 datalOl goodAA.vcf.gz merged.vcf.gz

We can check that everything looks OK:

bcftools view -m2 -M2 -v snps datalOl goodAA.vcf.gz \
| bcftools query -f '$CHROM\t$POS\t$REF\t$ALT\t%INFO/AA\n' | less

bcftools view -m2 -M2 -v snps datalOl goodAA.vcf.gz -H | wc -1

bcftools view -m2 -M2 -v snps -e 'INFO/AA=="."' datalO0l goodAA.vcf.gz -H | wc -1

For what proportion of SNPs did we get an ancestral allele?

Creation of lift-over chain

We create the lift-over chain following the UCSC approach and using the Kent utilities:
http://genomewiki.ucsc.edu/index.php/LiftOver Howto
https://genome.ucsc.edu/FAQ/FAQformat.html

mkdir align/chainMerge
mkdir align/net

Kent tools use the 2bit sequence format:

faToTwoBit reference/ninespine.fa reference/ninespine.2bit
#faToTwoBit reference/threespine.fa reference/threespine.2bit

If you don't have the three-spined genome as a Fasta file, you can download the 2bit
version:

wget http://wasabiapp.org/vbox/data/session_ 7/threespine.2bit -P reference

twoBitInfo reference/ninespine.2bit reference/ninespine.chromInfo

http://genomewiki.ucsc.edu/index.php/LiftOver_Howto
https://genome.ucsc.edu/FAQ/FAQformat.html

twoBitInfo reference/threespine.2bit reference/threespine.chromInfo
First we convert the maf file to the psl format:
maf-convert psl align/out3.maf > align/out3.psl

Compare the two files:

l1s -1h align/out3.maf
ls -1h align/out3.psl

less -S align/out3.maf
less -S align/out3.psl

We next chain the alignment hits and then sort them and split by the target:

axtChain -linearGap=medium -psl align/out3.psl reference/ninespine.2bit
reference/threespine.2bit align/out3.chain 2> align/axtChain.log

chainMergeSort align/out3.chain | chainSplit align/chainMerge stdin -lump=50
The different chains are catenated into one file and then sorted:

cat align/chainMerge/*.chain > align/all.chain

chainSort align/all.chain align/all.sorted.chain

We then make alignment nets out of chains:

chainNet align/all.sorted.chain reference/ninespine.chromInfo
reference/threespine.chromInfo align/net/all.net /dev/null

Finally we create a chain file with a subset of chains that appear in the net:
netChainSubset align/net/all.net align/all.chain reference/nineToThree.liftOver

This gives us a nine-spined-to-three-spined chain file. We swap that to get a
three-spined-to-nine-spined chain file:

chainSwap reference/nineToThree.liftOver reference/threeToNine.liftOver

We have a look on one of the chain files (it looks boring) and compress them to make their
use faster:

less -S reference/nineToThree.liftOver

gzip reference/nineToThree.liftOver
gzip reference/threeToNine.liftOver

We leave the actual use of the liftover chains for the next time.

