Ensembl REST API, variant annotation and four-fold degenerate sites

Let's continue with the old data:

cd ~/session_7
mkdir annotation

cd annotation

Ensembl REST API

Much of Ensembl core data is available through Ensembl BioMart at
http://www.ensembl.org/biomart. BioMart is useful for downloading large amounts of data for
one organism. However, the data are mainly covering the organism's genes and BioMart
contains very little comparative data (it contains homology information, though). BioMart can
be accessed programmatically but its Perl APl is not easy.

The new Ensembl REST API (http://rest.ensembl.org) provides the easiest access to many
types of data. The API can be accessed using different programming languages or, more
simply, using wget or curl.

See this region in Ensembl:
http://www.ensembl.org/Gasterosteus aculeatus/Location/View?db=core;r=MT:1-15742

Get familiar with the APl and, using wget or curl, download data for that region
- species is stickleback
- features overlap in any position in MT chromosome
- features are: gene, transcript, cds, exon
- output content type is: text/x-gff3
- output file name is threespine_mt_genes.gff

The output should match this:

wc threespine mt genes.gff
126 1203 25210 threespine mt genes.gff

Using these gene coordinates our aim is to annotate the mt genes in our ninespine data. We
first need to transfer them to the ninespine genome:

CrossMap.py gff ../reference/threeToNine.liftOver.gz threespine mt genes.gff \

ninespine mt genes.gff
We have a problem, however. Can you spot what?

less -S ninespine mt genes.gff
awk '{print $4}' ninespine mt genes.gff

bcftools query -r deg7180000006464 —-f '$SCHROM\t%POS\n' \
../../session 3/data/datal00.vcf.gz

http://www.ensembl.org/biomart
http://rest.ensembl.org/
http://www.ensembl.org/Gasterosteus_aculeatus/Location/View?db=core;r=MT:1-15742

We use for another chain file that maps the genes differently:
wget http://wasabiapp.org/vbox/data/session 11/threeToNine.liftOver.gz

CrossMap.py gff threeToNine.liftOver.gz threespine mt genes.gff \
ninespine mt genes.gff

less -S ninespine mt genes.gff
We then extract the variants for the mtDNA only, giving a smaller file that is easier to handle:

bcftools view -r deg7180000006464 ../../session 3/datalOl clean.vcf.gz -0z -o
datalOl mt.vcf.gz

bcftools view -H datalOl mt.vcf.gz | wc

What does this show?

R has a package called VariantAnnotation that takes a dff file, a vcf file and a reference
genome. From these it finds the variants that overlap with gene annotations and computes
the effect of the variant:

library(VariantAnnotation)
library(GenomicFeatures)

mttx <- makeTxDbFromGFF ("ninespine mt genes.gff",
format=c("gf£f3"),
dataSource="rest.ensembl.org",
dbxrefTag=c ("gene_id"))
mtvcf = readvcf ("datalOl mt.vcf.gz",c("stickleback"))
fas=FaFile("../reference/ninespine.fa")
vareff = predictCoding (mtvcf,mttx, fas)

vareff

names (vareff)
start (vareff)

vareffSREF

vareff[1,]
vareff[2,]

Now open the data in IGV: "data101_mt.vcf.gz" and "ninespine_mt_genes.gff". Zoom into a
variant region. Right-click left panel "Sequence" and select "Show translation".

What is a potential problem? A hint can be found from the same left panel settings box.

Extracting four-fold degenerate sites

Four-fold degenerate sites are those positions in a protein coding sequence where none of
the possible base substitutions changes the amino acid that the codon codes for. Because of
this, these sites are considered a good proxy of neutral substitution process.

To test the analysis of four-fold degenerate sites we need to get some alignment data. Find
coordinates of ENSGACT00000027727 and extract multiple alignment for different fish
species:

wget —-gq —--header='Content-type:application/json'

'http://rest.ensembl.org/alignment/region/stickleback/<fill in something
here>?species set group=fish' -0 - > mt fish.tmp

The output is in json format. A not-so-elegant way to parse the interesting fields is this:

sed 's/strand/\n/g' mt fish.tmp | grep MT | cut -d\" -£8-9,17 \
| sed 's/:"/>/;s/"/\n/' | grep . > mt fish.fas

less -S mt fish.tmp
less -S mt fish.fas

This data can now be analysed with R (after installing the missing packages):

library (rphast)
msa <- read.msa ("mt fish.fas")

whole = feat (seq="gasterosteus aculeatus", src=".", feature="CDS",start=1,

end=ncol.msa (msa))

ffd <- get4d.msa (msa, feature=whole)
write.msa (ffd, "fish ffd.fas","FASTA")
write.msa (ffd, "fish ffd.phy","PHYLIP")

write.msa (msa,"fish all.fas","FASTA")
write.msa (msa,"fish all.phy","PHYLIP")

We then return to bash and (1) fix the fasta file, remove the newlines from phyip file and run
RAXML:

sed -1 's/ //' fish ffd.fas
perl -pe 's/(\w{70})\n/$1/' fish ffd.phy > fish ffd.raxml
raxmlHPC -m GTRGAMMA -p 11 -s fish ffd.raxml -n fish ffd

sed -1 's/ //' fish all.fas
perl -pe 's/(\w{70})\n/$1/' fish all.phy > fish all.raxml
raxmlHPC -m GTRGAMMA -p 11 -s fish all.raxml -n fish all

On my VM, the RAXML analysis takes too long (it should be a second or two, only). If that's
the case, stop it and download the files:

wget http://wasabiapp.org/vbox/data/session 11/RAxML bestTree.fish ffd
wget http://wasabiapp.org/vbox/data/session 11/RAxML bestTree.fish all

With these we can continue in R;

library (ape)
msa.ffd=read.FASTA("fish ffd.fas")
round (dist.dna (msa.ffd, model = "T92"),4)

msa.all=read.FASTA("fish all.fas")
round (dist.dna (msa.all,model = "T92"),4)

tree.ffd = read.tree ("RAxML bestTree.fish ffd")
tree.ffd2=root (tree.ffd, 1)

plot (tree.ffd2)
edgelabels (text=round (tree.ffd2$edge.length, 4),
adj = c (0.5, -.95), frame="n", cex=0.85)

tree.all = read.tree("RAxML bestTree.fish all")
tree.all2=root (tree.all,l)

plot (tree.all2)

edgelabels (text=round(tree.all2$edge.length,4),
adj = c(0.5, -.95), frame="n", cex=0.85)

What do you notice? Is the analysis of ffd sites appropriate for these species?

